

Hydro Electronic Devices, Inc.

Intelligent Electronic Controls for Mobile Equipment

Basic Electronics

Basic Electronics

- Provide knowledge / basic understanding of electronics concepts
- Familiarize / provide definitions of key terminology

Voltage (V) = Resistance (Ohms) X Current (Amps)

V = R X I

Hydraulic System	Electrical System		
Hose & Tubing	Board traces & wires		
Flow	Current		
Pressure	Voltages		
Check valves	Diodes		
Orifices	Resistors		
Accumulators	Capacitors		
Surges	Spikes		

Note: Reference pages 5-6 in "Your Guide to the Electronic Control of Fluid Power"

Inputs

- Switch-to-Battery
- Switch-to-Ground
- Analog
- Frequency
- RTD

Switch on battery side of load

Switch on Ground side of load

- Also known as a/d, analog to digital, voltage to digital
- Provides controller with a voltage
 - Voltage is between 0 to the defined upper voltage range (example 0 5 VDC)
 - Steps are based on resolution
- Resolutions
 - 8 bit, range is from 0 255
 - 10 bit, range is from 0 1023
 - 12 bit, range is from 0 4095
- Common use: joysticks, foot pedals, adjustment pots

- Common analog input
- Output ranges can vary
- Example: 10% joystick (supplied with 5VDC)
 - Center is 2.5VDC
 - Maximum output is 3VDC
 - Minimum output is 2VDC

- The number pulses per second
- Frequency = 1/period
- Example:
 - If $t_{period} = 0.001$ sec

Frequency = 1/0.001 = 1000 Hz

Units is in Hz (cycles per second)

Examples

- Engine speeds
- Drum count
- Water flow

- Resistive to Digital
- Resistance Temperature Detector
- Controller measure change in resistance of sensor
- Example ranges 0-250 Ohms or 0-4,000 Ohms
- Used:
 - Engine temperature sensors
 - Fuel gauges

- Outputs
 - Sinking
 - Sourcing
 - Analog
 - PWM
 - Digital
 - Servo

Controller connects the customer output device to battery

Battery

HED Controller

Controller connects the customer output device to ground

HED Controller

Ground

- Varying the "ON" time will result in a higher Vdc
- Duty cycle is the percentage on over the full period
- Duty cycle = (t_{on})/(t_{period})x100
- Sinking or Sourcing

- Is a simple on or off output.
- Can be sourcing or sinking
- If On and sourcing, supplying battery from the controller

- Allows for controlling a motor/valve in two direction (bi-direction)
- Eg: H-bridge

- Debounce time
- Frequency gauges
- Resistance gauges
- Numbering Systems
- Truth tables
- Microcontroller

The amount of time required for a mechanical switch to settle in the on/off state

- Driven by Sinking or Sourcing
- Sinking need to add a pull-up resistor between the gauge and output. Sourcing built in resister in gauge.
- Higher the frequency of the output, the higher the needle will rise

- Typically driven by supplying a current across a varying resistor sensor (eg: RTD sensor)
- HED drives it by varying the duty cycle, which in returns looks like the resistance is varying.
- Can only be driven by sinking outputs

Decimal = base 10

Binary = base 2

Hex = base 16

- What is sent down the CAN bus
- Example: 1001₂ = 9₁₀
- Single digit is called a bit
- 4 bits equal a nibble
 Nibble
 1111₂

Base is 16

- Example: 7F2₁₆ = 2034₁₀
- 4 bits is a hex digit
 - $eg: 1111_2 = F_{16}$
- 2 hex digits are a byte (or 8 bits binary) - 1111 1111₂ = FF₁₆ = byte
- 4 hex digits or 2 bytes is a word
 FF FF₁₆ = word

Number Chart

Binary	Hex	Decimal	
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	0123456789ABCDEF	0 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 8 9 10 11 2 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 5 6 7 8 9 10 11 12 3 10 11 12 3 10 11 12 11 12 11 12 11 11 11 11 12 11 11	

191

- A truth table tells the output response based on the table's inputs.
- Example:

	J1939 Msg from Engine stoppe d	Bea con ligh t swit ch	Left turn signal	Right turn signal	Hazar d lights
Warning indicator lamp	1				
Engine indicator lamp	1				
Beacon light output		1			
Left indicator lamp			1		1
Right indicator lamp				1	1

0-

- Newer processors have them built in
 Up to five controllers = 5 CAN port
- If not built in
 - Dependant on the real estate room on the board
 - And memory need to store the CAN messages

Flash

- Application code is stored
- Saves the information even if powered off
- RAM (read access memory)
 - Stores data during process (counters, timers, variables)
 - Lose when powered off
- EEPROM
 - Stores data usually changed during set-up
 - Has limit the number of times it can be written to

- Provide knowledge / basic understanding of electronics concepts
- Familiarize / provide definitions of key terminology